402com永利平台|402com永利1站|55.402com永利网址

您的位置:402com永利平台 > 科学研究 > AI正将新材料的发现过程提速200倍,日本造出坚硬

AI正将新材料的发现过程提速200倍,日本造出坚硬

2019-08-17 22:34

日本东京大学和日本同步辐射加速器研究所的研究团队合作,制造出一种比很多金属都要坚硬的玻璃。

402com永利1站 1

几百年来,人们一直是通过反复试验或者靠运气和偶然发现新材料。现在,科学家们正在使用人工智能来加速这一过程。

几百年来,人们一直是通过反复试验或者靠运气和偶然发现新材料。现在,科学家们正在使用人工智能来加速这一过程。

当玻璃掉在地上或者被撞击的时候不破碎,这很有用,从汽车到摩天大楼,再到智能手机和平板电脑,都需要这样的玻璃。要生产出这样的玻璃,科学家需要找到比传统方法更加优化的制作方法。其中一个方法是在混合材料中加入大量氧化铝,此前的研究表明这种玻璃比传统玻璃更加坚固。

中国物理学家,已经找到一种方法,可以将新合金研发所需的时间,从数年减少到数小时。利用该技术已经生产出高性能合金,包括世界上最坚韧并用于极热环境的非晶金属或金属玻璃。

最近,西北大学的研究人员用AI来解决如何生成新的金属玻璃混合物的问题。这比起在实验室进行实验快了200倍。

最近,西北大学的研究人员用AI来解决如何生成新的金属玻璃混合物的问题。这比起在实验室进行实验快了200倍。

但这种生产过程中会出现这样一个问题——当生产玻璃的混合材料中加入更多的铝时,盛有混合物的容器表面会产生氧化硅晶体,很容易让最终的玻璃产品价值尽失。

中国研究人员表示,寻找合金通常需要数年时间,但现在可以在不到两小时内完成。在传统方法中,需要对金属进行称重,熔化成合金并测试其性能。为了找到合适的配方,研究人员可能需要测试超过一千种组合,每次测试可能需要一两天。

科学家们正在构建由数千种化合物组成的数据库,以便用算法来预测哪些化合物的组合会形成有趣的新材料。还有人用AI来分析已发表的论文挖据“材料配方”以产生新材料。

科学家们正在构建由数千种化合物组成的数据库,以便用算法来预测哪些化合物的组合会形成有趣的新材料。还有人用AI来分析已发表的论文挖据“材料配方”以产生新材料。

据物理学家组织网报道,日本研究人员找到了一种绕开这个矛盾的方法——他们从生产过程中移除了盛装材料的容器。

北京中国科学院物理研究所研究员,该研究的首席科学家王卫华教授表示,他团队研究的研究灵感来自于早期的彩色电视机,它使用了三种电子喷射设备,称为喷射枪,发射红色,绿色和蓝色灯光在屏幕背面,为观众创造真实世界的色彩。

过去,科学家和建筑工人们只能将材料混合在一起看看能形成什么。比如,水泥就是这样被发现的。随着时间的推移,他们学习了各种化合物的物理特性,但大部分知识仍然只是基于直觉。

过去,科学家和建筑工人们只能将材料混合在一起看看能形成什么。比如,水泥就是这样被发现的。随着时间的推移,他们学习了各种化合物的物理特性,但大部分知识仍然只是基于直觉。

气动悬浮法是新生产工艺的关键。在新的玻璃生产过程中,研究人员用氧气在下方推动混合材料并使其滞留在空中,然后用一把激光“铲子”将材料充分混合。最终的结果是,可以在玻璃中加入比任何其他方法更多的铝,这种新型玻璃透明、无色,极其坚硬。测试表明,新玻璃比很多金属都坚硬,几乎和钢一样。

王教授团队的合金技术也涉及电子枪,他们用电子脉冲发射了由不同金属制成的“子弹”,同时撞击硅板并熔合形成合金。传感器迅速测量了合金的性质,并选择出最适合研究目的的产品。

“如果你问为什么日本水淬钢用于制作刀具最好,我觉得谁都回答不了,”美国国家标准与技术研究院材料基因倡导小组的主任James Warren说,“对于这种内部结构与迷人外表之间的关系,它们只有一种根据经验而来的理解。”

“如果你问为什么日本水淬钢用于制作刀具最好,我觉得谁都回答不了,”美国国家标准与技术研究院材料基因倡导小组的主任James Warren说,“对于这种内部结构与迷人外表之间的关系,它们只有一种根据经验而来的理解。”

试想,若你的手机屏幕用的是这种玻璃,你将再也不会担心把屏幕摔坏了。但现在要大规模生产防破碎手机屏幕还有困难,该团队还不能将新方法规模化,但他们对尽快实现商业化很有信心。

402com永利1站,这种方法允许科学家创建超过1,000个样本,测试他们的表现,并在几个小时内选择最希望得到的样本。王教授表示,材料科学将发生革命。

Warren说,我们现在可以利用数据库和计算机来快速确定是什么让材料变得更坚固或更轻,而不是凭经验,这有可能变革整个行业。此外,原本发现一种材料并将其整合成产的时间可能需要超过20年,加速这一过程势必会使我们获得更好的手机电池和屏幕,更好的用于火箭的合金材料,以及更好的健康设备传感器。

Warren说,我们现在可以利用数据库和计算机来快速确定是什么让材料变得更坚固或更轻,而不是凭经验,这有可能变革整个行业。此外,原本发现一种材料并将其整合成产的时间可能需要超过20年,加速这一过程势必会使我们获得更好的手机电池和屏幕,更好的用于火箭的合金材料,以及更好的健康设备传感器。

相关研究成果发表在11月5日出版的《科学》杂志上。

论文中报道的合金含有铱,镍和钽。它具有类似于玻璃的扭曲原子结构。金属玻璃可以非常坚固,但它们通常在400摄氏度或更高的温度下会变脆。

“任何事情只要是由物质造成的,我们就可以改进。”沃伦说。

“任何事情只要是由物质造成的,我们就可以改进。”沃伦说。

研究人员表示,新合金在700摄氏度以上的抗拉强度几乎是钢的8倍。它还可以在王水中完整存放数月(王水可以溶解金和铂,硝酸和盐酸的混合物)。合金的这些特性可用于制造关键部件,适用于空间站,深海探索和战场等恶劣环境。

正如Warren所说,为了理解新材料是如何制造的,我们可以把材料科学家想象成厨师。假设你有鸡蛋,并且你喜欢有嚼头的食物,这些就是你想要的菜肴的特点,但你该怎么做呢?为了创建一个蛋白和蛋黄都结实的结构,你需要一个配方,其中包含根据你想要的结果处理鸡蛋的步骤,比如煮老一点。

正如Warren所说,为了理解新材料是如何制造的,我们可以把材料科学家想象成厨师。假设你有鸡蛋,并且你喜欢有嚼头的食物,这些就是你想要的菜肴的特点,但你该怎么做呢?为了创建一个蛋白和蛋黄都结实的结构,你需要一个配方,其中包含根据你想要的结果处理鸡蛋的步骤,比如煮老一点。

王教授表示,下一步将人工智能引入设计并寻找新的非晶态金属,它可以进一步提高研发的速度。在不久的将来,甚至可以按需创建材料。

材料科学使用相同的概念:如果一位科学家想要某些材料特性(比如说,轻便又坚韧),她会寻找可以产生这些特性的物理和化学结构,以及需要通过哪种处理过程,比如对金属进行熔化或捶打,来创造这样的结构。

材料科学使用相同的概念:如果一位科学家想要某些材料特性(比如说,轻便又坚韧),她会寻找可以产生这些特性的物理和化学结构,以及需要通过哪种处理过程,比如对金属进行熔化或捶打,来创造这样的结构。

建立“材料云”数据库,虽不完美但已为科学家们创造了捷径

建立“材料云”数据库,虽不完美但已为科学家们创造了捷径

数据库和计算技术可以帮助人们找到答案。“我们对材料进行量子力学级别的计算,这种计算非常复杂,因此我们可以在实验室中合成一种可能的新材料之前,就用计算机预测出它的属性。”西北大学材料科学家Chris Wolverton说,他主管开放量子材料数据库。其他主要数据库包括材料项目和材料云。数据库还不完整,但数据量一直在增长,并且已经从中找到了令人兴奋的发现。

数据库和计算技术可以帮助人们找到答案。“我们对材料进行量子力学级别的计算,这种计算非常复杂,因此我们可以在实验室中合成一种可能的新材料之前,就用计算机预测出它的属性。”西北大学材料科学家Chris Wolverton说,他主管开放量子材料数据库。其他主要数据库包括材料项目和材料云。数据库还不完整,但数据量一直在增长,并且已经从中找到了令人兴奋的发现。

瑞士洛桑联邦理工大学研究员Nicola Marzari利用数据库查找可剥离的3D材料,以创建仅有一层的2D材料。比如,被炒得沸沸扬扬的石墨烯,它由单层石墨(也就是铅笔芯的材料)组成。像石墨烯一样,这些2D材料可以具有非凡的特性,如强度,而这在其3D形态中是不存在的。

瑞士洛桑联邦理工大学研究员Nicola Marzari利用数据库查找可剥离的3D材料,以创建仅有一层的2D材料。比如,被炒得沸沸扬扬的石墨烯,它由单层石墨(也就是铅笔芯的材料)组成。像石墨烯一样,这些2D材料可以具有非凡的特性,如强度,而这在其3D形态中是不存在的。

Marzari的团队用算法筛选来自多个数据库的信息。他上个月在《自然纳米技术杂志》上发表的文章中写到,该算法在超过100,000种材料中,最终发现可以剥离成一层的材料大约有2,000种。

Marzari的团队用算法筛选来自多个数据库的信息。他上个月在《自然纳米技术杂志》上发表的文章中写到,该算法在超过100,000种材料中,最终发现可以剥离成一层的材料大约有2,000种。

Marzari管理的“材料云”是一个材料“宝藏”,因为许多材料具有可以改善电子设备的特性,有些可以很好地传导电力,有些可以将热量转化为水,有些可以吸收太阳能:它们可以用于计算机或电池中的半导体,因此Marzari团队的下一步就是密切研究这些可能的特性。

Marzari管理的“材料云”是一个材料“宝藏”,因为许多材料具有可以改善电子设备的特性,有些可以很好地传导电力,有些可以将热量转化为水,有些可以吸收太阳能:它们可以用于计算机或电池中的半导体,因此Marzari团队的下一步就是密切研究这些可能的特性。

Marzari的工作是科学家如何使用数据库来预测哪些化合物可能会产生令人兴奋的新材料的一个例子。然而,这些预测仍需要在实验室中得到证实。并且Marzari仍然需要给他的算法定义某些规则,比如寻找弱化学键。AI可以创建一条捷径:科学家可以告诉AI他们想要创造的东西,比如超强材料,而不是编制特定的规则,然后AI会告诉科学家生成新材料最佳实验方法。

Marzari的工作是科学家如何使用数据库来预测哪些化合物可能会产生令人兴奋的新材料的一个例子。然而,这些预测仍需要在实验室中得到证实。并且Marzari仍然需要给他的算法定义某些规则,比如寻找弱化学键。AI可以创建一条捷径:科学家可以告诉AI他们想要创造的东西,比如超强材料,而不是编制特定的规则,然后AI会告诉科学家生成新材料最佳实验方法。

Wolverton和他在西北大学的团队在本月出版的Science Advances杂志上的一篇论文中描述了AI 的运用。研究人员渴望研制新的金属玻璃,这种玻璃比金属或玻璃更结实,但硬度却更低,未来可以用于改进手机和航天器。

Wolverton和他在西北大学的团队在本月出版的Science Advances杂志上的一篇论文中描述了AI 的运用。研究人员渴望研制新的金属玻璃,这种玻璃比金属或玻璃更结实,但硬度却更低,未来可以用于改进手机和航天器。

斯坦福大学SLAC国家加速器实验室的共同研究者Apurva Mehta说,他们使用的AI方法与人们学习新语言的方式类似。语言学习的其中一种方法是坐下来记住所有的语法规则。“但另一种学习方法就是靠经验和听别人说话,”Mehta说。

斯坦福大学SLAC国家加速器实验室的共同研究者Apurva Mehta说,他们使用的AI方法与人们学习新语言的方式类似。语言学习的其中一种方法是坐下来记住所有的语法规则。“但另一种学习方法就是靠经验和听别人说话,”Mehta说。

他们的做法是把两者组合起来。首先,研究人员浏览尽可能多的已发表的论文,了解如何制作不同类型的金属玻璃。接下来,他们将这些“语法规则”提供给机器学习算法。然后该算法学会自己预测哪些元素的组合会创造一种新的金属玻璃形式,这类似于通过去法国居住来改善法语,而不是无休止地背词性变化表。Mehta的团队随后在实验室中检验了机器学习系统给出的建议。

他们的做法是把两者组合起来。首先,研究人员浏览尽可能多的已发表的论文,了解如何制作不同类型的金属玻璃。接下来,他们将这些“语法规则”提供给机器学习算法。然后该算法学会自己预测哪些元素的组合会创造一种新的金属玻璃形式,这类似于通过去法国居住来改善法语,而不是无休止地背词性变化表。Mehta的团队随后在实验室中检验了机器学习系统给出的建议。

科学家一次可以合成和测试数千种材料。但即使以这样的速度,盲目尝试每种可能的组合还是很浪费时间。“他们不能把整个元素周期表都拿来做尝试,”Wolverton说,所以AI的作用是“为他们提供几个入手点”。

科学家一次可以合成和测试数千种材料。但即使以这样的速度,盲目尝试每种可能的组合还是很浪费时间。“他们不能把整个元素周期表都拿来做尝试,”Wolverton说,所以AI的作用是“为他们提供几个入手点”。

AI的结果并不完美,还不能给出更进一步的建议,比如所需元素的确切比例,但科学家们确实能够用AI的结果生成新的金属玻璃。另外,测试AI给出的结果意味着他们现在有更多的数据可以反馈给算法,所以每次重新预测都会变得更智能。

AI的结果并不完美,还不能给出更进一步的建议,比如所需元素的确切比例,但科学家们确实能够用AI的结果生成新的金属玻璃。另外,测试AI给出的结果意味着他们现在有更多的数据可以反馈给算法,所以每次重新预测都会变得更智能。

创建一份“食谱”或材料配方集

创建一份“食谱”或材料配方集

使用AI的另一种方式是创建一个“食谱”或材料配方集。在去年年底发表的两篇论文中,麻省理工学院的科学家开发了一种机器学习系统,可以扫描学术论文,找出哪些论文包含制作某种材料的说明。它检测出哪些段落包含“配方”的准确率高达99%,并且该段落中找出原话的准确度有86%。

使用AI的另一种方式是创建一个“食谱”或材料配方集。在去年年底发表的两篇论文中,麻省理工学院的科学家开发了一种机器学习系统,可以扫描学术论文,找出哪些论文包含制作某种材料的说明。它检测出哪些段落包含“配方”的准确率高达99%,并且该段落中找出原话的准确度有86%。

麻省理工学院团队现在正在对AI系统进行更精确的训练。他们希望为整个科学界创建这种“食谱”数据库,但他们需要与这些学术论文的出版商合作,以确保其收集不违反任何协议。最终,团队还希望能够训练系统阅读论文,然后自行制作新的“食谱”。

麻省理工学院团队现在正在对AI系统进行更精确的训练。他们希望为整个科学界创建这种“食谱”数据库,但他们需要与这些学术论文的出版商合作,以确保其收集不违反任何协议。最终,团队还希望能够训练系统阅读论文,然后自行制作新的“食谱”。

麻省理工学院材料科学家及共同研究者Elsa Olivetti:“我们的其中一个目标是对于已经发现的材料,找到更有效,更低成本的生成方法。另一个目标是,对于计算机预测出的化合物,我们能否提出一系列更好的方法来生成它?”

麻省理工学院材料科学家及共同研究者Elsa Olivetti:“我们的其中一个目标是对于已经发现的材料,找到更有效,更低成本的生成方法。另一个目标是,对于计算机预测出的化合物,我们能否提出一系列更好的方法来生成它?”

挑战:模型预测考虑不到现实因素

挑战:模型预测考虑不到现实因素

人工智能和材料科学的未来看起来很有前景,但依然存在挑战。首先,计算机无法预测一切。“这些预测本身就有错误,并且经常是在简化的材料模型基础上预测,而不考虑真实情况”,EPFL的Marzari说。有各种各样的环境因素会影响化合物的行为,比如温度和湿度,大多数模型没有考虑这些因素。

人工智能和材料科学的未来看起来很有前景,但依然存在挑战。首先,计算机无法预测一切。“这些预测本身就有错误,并且经常是在简化的材料模型基础上预测,而不考虑真实情况”,EPFL的Marzari说。有各种各样的环境因素会影响化合物的行为,比如温度和湿度,大多数模型没有考虑这些因素。

Wolverton认为另一个问题是我们仍然没有足够多的的所有化合物的数据资料,缺乏数据意味着算法不会很智能。也就是说,他和Mehta现在希望在除金属玻璃以外的其他类型的材料上使用他们的方法。他们希望有一天,生成新材料不再需要由人来做实验,而只是AI和机器人就够了。“我们可以创建一个真正完全自主的系统,”Wolverton说,“没有任何人参与的系统。”

Wolverton认为另一个问题是我们仍然没有足够多的的所有化合物的数据资料,缺乏数据意味着算法不会很智能。也就是说,他和Mehta现在希望在除金属玻璃以外的其他类型的材料上使用他们的方法。他们希望有一天,生成新材料不再需要由人来做实验,而只是AI和机器人就够了。“我们可以创建一个真正完全自主的系统,”Wolverton说,“没有任何人参与的系统。”

编辑点评

纵观新材料科学发展现状,各项瓶颈挑战也是科技发展迫切要解决的现状。抓住机遇,充分调动各类型资金投入到新材料科学中,是加速材料科学发展的有力措施。

本文由402com永利平台发布于科学研究,转载请注明出处:AI正将新材料的发现过程提速200倍,日本造出坚硬

关键词: