402com永利平台|402com永利1站|55.402com永利网址

您的位置:402com永利平台 > 科学研究 > 生命科学高校瞿礼嘉商讨组开掘植物中一个全新

生命科学高校瞿礼嘉商讨组开掘植物中一个全新

2019-07-12 12:46

402com永利1站 1

北京大学生命科学学院瞿礼嘉教授课题组发现并鉴定了一个新的植物印记基因——NUWA,该基因对植物早期发育的亲本效应兼具印记与非印记两种类型。首先,NUWA是一个拟南芥的必需基因,其功能的缺失导致雌配子体传递率下降,且早期胚胎和胚乳中出现细胞/核增殖缺陷,并最终导致种子败育。其次,NUWA是母本表达的印记基因,因为从受精前的配子体发育阶段到受精后的16细胞胚胎阶段,都只有NUWA的母本等位基因的转录和翻译能被检测到,且受精后,NUWA的母本等位基因的重新转录过程也可在合子期被检测到。目前已经被鉴定的其他植物印记基因多数编码细胞核定位的蛋白,而NUWA蛋白定位于线粒体,并且对发育早期线粒体的形态和功能非常重要。NUWA的母本效应很可能是为了维持或提高植物早期发育阶段中细胞器与细胞核协调工作的效率而被驱动演化的。受精前,NUWA仅在雌配子体中表达。受精后,在早期胚胎和胚乳中,由核基因组编码的、母本等位基因特异表达的NUWA蛋白仍然定位于母体承袭的线粒体中,并在其中发挥其功能;而与此同时,在父本承袭的非常少量的线粒体在胚囊中被全部降解,NUWA的父本等位基因没有表达。也就是说,在线粒体中起重要功能的由核编码的NUWA基因,其母本等位基因的特异性表达模式与线粒体的母系遗传实现了完美协调。这一发现不仅揭示了植物的印记基因参与的早期亚细胞过程的新方面,也揭示了线粒体的母本控制的一个新的独特机制,并且为植物早期发育过程中细胞核、细胞器的协调机制又增加了一个复杂的层面。

早期胚胎和胚乳中NUWA基因的母本控制示意图

图:Lot调控植物细胞中TGN的形成以及内膜运输过程。

该研究得到国家自然基金委面上项目和科技部“973”计划资助,相关研究论文于3月25日在线发表于PLoS GENETICS 杂志,杨维才实验室的于天英和石东乔为论文共同第一作者。

这项工作于2017年1月以“A Novel Imprinted Gene NUWA Controls Mitochondrial Function in Early Seed Development in Arabidopsis”为题在线发表在《科学公共图书馆·遗传》(PLoS Genetics)上。北京大学生命科学学院博士后何珊博士是该论文的第一作者,瞿礼嘉教授是该论文的通讯作者。该研究得到了国家重点基础研究发展计划和高等学校学科创新引智计划的资助。

这项工作于2017年1月以“A Novel Imprinted Gene NUWA Controls Mitochondrial Function in Early Seed Development in Arabidopsis”为题在线发表在《科学公共图书馆·遗传》(PLoS Genetics)上。北京大学生命科学学院博士后何珊博士是该论文的第一作者,瞿礼嘉教授是该论文的通讯作者。该研究得到了国家重点基础研究发展计划(973计划)和高等学校学科创新引智计划(111计划)的资助。

402com永利1站 2

zar1402com永利1站,agb1 突变引起的合子分裂表型异常。本图分别显示Ler 野生型, 与zar1-1 , zar1-2 , agb1-2 , 和 zar1-2 agb1-2 等各突变体的顶细胞和基细胞。ac, 顶细胞(apical cell); bc, 基细胞(basal cell); dp, 细胞分裂面(division plane)。标尺= 10 μm。

402com永利1站 3

亲本效应(parental effect)是指生物体后代的性状只受到某一个亲本基因型的影响,而不受到另一亲本的基因型影响的现象。在植物发育过程中,亲本效应主要体现在早期种子发育时期,即某些基因对于胚胎和胚乳发育的影响仅是由单亲本来源的产物控制的。植物的亲本效应一般可以分为由印记(imprinting)形成的亲本效应和非印记的亲本效应两类。非印记的亲本效应在植物中较为常见,其产生的原因是:基因表达是在受精前的雌配子体或雌配子体发育阶段发生的,表达的产物(RNA或蛋白质)却是胚胎发育或胚乳发育过程中必需的。而印记的亲本效应是由部分印记基因(imprinted gene)产生的。印记基因是仅在哺乳动物和被子植物中发现的、在受精后的发育过程中偏重表达母本或父本等位基因的基因。与哺乳动物中已鉴定出上百个在发育中有多种重要功能的印记基因不同,在植物中至今仅有极少量的印记基因得到了确认,而且这些得到确认的印记基因绝大部分在发育中没有明显的功能。哺乳动物的印记基因对于其早期发育的许多亚细胞过程都非常重要,但长期以来人们并不清楚植物中的印记基因是否也是如此,动物和植物的印记基因趋同演化的驱动力也是一个谜。

高尔基体不仅是细胞内膜系统膜泡运输的核心,而且也是细胞壁和胞外基质多糖、质膜糖脂合成以及蛋白糖基化修饰的位点。不同于动物细胞,植物细胞高尔基体产生一个分离的、独立完成不同功能的反面管网结构TGN(Trans-Golgi Network),专门负责分选和分泌来自反面膜囊的物质。同时,TGN兼任了早胞内体的功能,来自胞吞作用的小泡也进入TGN,因此,TGN是同时负责植物细胞内分泌和内吞的特殊结构。然而长期以来植物细胞TGN发生的分子机制还不清楚。

中国科学院遗传与发育生物学研究所杨维才研究组通过对拟南芥Ds插入突变体zygotic arrest 1 (zar1) 进行深入研究,揭示了控制植物早期胚胎发育的激酶信号调控机制。在 zar1突变体中,合子发育停滞在伸长期,或者显示异常的对称分裂,产生一个大的顶细胞和一个短的基细胞。进一步观察发现,WOX2WOX8WRKY2 等细胞特异性标记在zar1突变体中非正常表达,表明顶细胞系和基细胞系的细胞分化异常。ZAR1基因编码一个定位于细胞膜的RLK/Pelle 激酶,ZAR1在成熟胚囊的助细胞、卵细胞和中央细胞中特异表达,受精后,ZAR1集中在合子和胚乳中。ZAR1能够与钙调蛋白和G蛋白的β亚基相互作用,而这种结合又可激活ZAR1的激酶活性。在zar1, agb1, 和zar1 agb1等突变体中均出现不正常的合子分裂,进一步说明ZAR1作为细胞膜受体激酶,通过对外部信号、钙离子信号和G蛋白通路信号的整合,调控了合子分裂和早期胚胎发育过程中细胞分化和命运决定。

亲本效应是指生物体后代的性状只受到某一个亲本基因型的影响,而不受到另一亲本的基因型影响的现象。在植物发育过程中,亲本效应主要体现在早期种子发育时期,即某些基因对于胚胎和胚乳发育的影响仅是由单亲本来源的产物控制的。植物的亲本效应一般可以分为由印记形成的亲本效应和非印记的亲本效应两类。非印记的亲本效应在植物中较为常见,其产生的原因是:基因表达是在受精前的雌配子体或雌配子体发育阶段发生的,表达的产物却是胚胎发育或胚乳发育过程中必需的。而印记的亲本效应是由部分印记基因产生的。印记基因是仅在哺乳动物和被子植物中发现的、在受精后的发育过程中偏重表达母本或父本等位基因的基因。与哺乳动物中已鉴定出上百个在发育中有多种重要功能的印记基因不同,在植物中至今仅有极少量的印记基因得到了确认,而且这些得到确认的印记基因绝大部分在发育中没有明显的功能。哺乳动物的印记基因对于其早期发育的许多亚细胞过程都非常重要,但长期以来人们并不清楚植物中的印记基因是否也是如此,动物和植物的印记基因趋同演化的驱动力也是一个谜。

北京大学生命科学学院瞿礼嘉教授课题组发现并鉴定了一个新的植物印记基因——NUWA(女娲),该基因对植物早期发育的亲本效应兼具印记与非印记两种类型。首先,NUWA是一个拟南芥的必需基因,其功能的缺失导致雌配子体传递率下降,且早期胚胎和胚乳中出现细胞/核增殖缺陷,并最终导致种子败育。其次,NUWA是母本表达的印记基因,因为从受精前的配子体发育阶段到受精后的16细胞胚胎阶段,都只有NUWA的母本等位基因的转录和翻译能被检测到,且受精后,NUWA的母本等位基因的重新(de novo)转录过程也可在合子期被检测到(图A)。目前已经被鉴定的其他植物印记基因多数编码细胞核定位的蛋白,而NUWA蛋白定位于线粒体,并且对发育早期线粒体的形态和功能非常重要。NUWA的母本效应很可能是为了维持或提高植物早期发育阶段中细胞器与细胞核协调工作的效率而被驱动演化的(图B)。受精前,NUWA仅在雌配子体中表达。受精后,在早期胚胎和胚乳中,由核基因组编码的、母本等位基因特异表达的NUWA蛋白仍然定位于母体承袭的线粒体中,并在其中发挥其功能;而与此同时,在父本承袭的非常少量的线粒体在胚囊中被全部降解,NUWA的父本等位基因没有表达。也就是说,在线粒体中起重要功能的由核编码的NUWA基因,其母本等位基因的特异性表达模式与线粒体的母系遗传实现了完美协调。这一发现不仅揭示了植物的印记基因参与的早期亚细胞过程的新方面,也揭示了线粒体的母本控制的一个新的独特机制,并且为植物早期发育过程中细胞核、细胞器的协调机制又增加了一个复杂的层面。

中国科学院遗传与发育生物学研究所杨维才研究组鉴定了一个影响高尔基体TGN形成的蛋白LOT(Loss of TGN)。在LOT突变体中,花粉管在柱头上的生长被抑制,植物表现出严重的不育表型,进一步的研究发现,突变体中高尔基体膜囊过度堆积,且源于高尔基体的分泌小泡以及TGN的数目显著减少;利用特异标记TGN的荧光蛋白也证实在花粉管中TGN的形成被阻碍。此外,突变体花粉管中细胞壁组分果胶质、细胞膜上受体样激酶以及磷脂酰肌醇的形成均受到抑制,细胞内吞作用也被显著阻碍,从而影响了花粉管的生长。亚细胞定位显示,LOT定位于高尔基体的外围,但是LOT不影响高尔基体驻留蛋白的定位。蛋白功能分析显示,在酵母中,LOT的同源蛋白Rgp1作为酵母小GTP蛋白Ypt6-GEF的组分发挥功能,而LOT也可以互补Rgp1在酵母中的功能。综上所述,该研究揭示了植物细胞TGN形成的分子机制,并增进了人们对植物细胞内膜运输调控机制的认识。

论文信息:Yu T-Y, Shi D-Q, Jia P-F, Tang J, Li H-J, Liu J, et al. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate. PLoS Genet 12: e1005933. doi:10.1371/journal.pgen.1005933.

早期胚胎和胚乳中NUWA基因的母本控制示意图

402com永利1站 4

该论文于11月9日在线发表于《美国国家科学院院刊》(PNAS),杨维才研究组博士贾鹏飞和薛勇为该文章的共同第一作者,杨维才和李红菊为共同通讯作者。该研究得到国家自然科学基金项目的资助。

双受精是高等植物的重要特征。双受精产生受精卵和胚乳核,再进一步发育为胚胎和胚乳,形成种子。植物的受精卵直接分化为合子,合子伸长后经历的第一次分裂为不对称分裂,产生两个大小不同、命运相异的细胞,即体积较小但细胞质浓厚的顶细胞和体积较大但胞质较少的基细胞。顶细胞经过多次分裂,产生子叶、胚芽和胚轴等;基细胞则产生胚根和胚柄(在胚胎发育过程中胚根逐渐降解)。因此,合子极性的形成和第一次不对称分裂即确立了个体发育的模式,在植物胚胎发育中具有重要意义。

本文由402com永利平台发布于科学研究,转载请注明出处:生命科学高校瞿礼嘉商讨组开掘植物中一个全新

关键词: